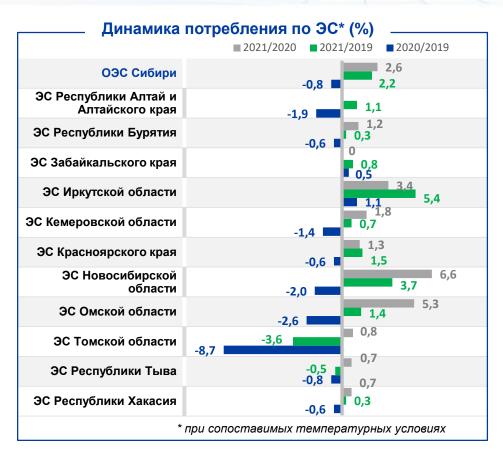
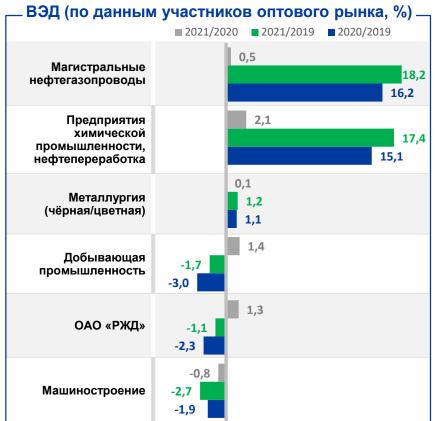


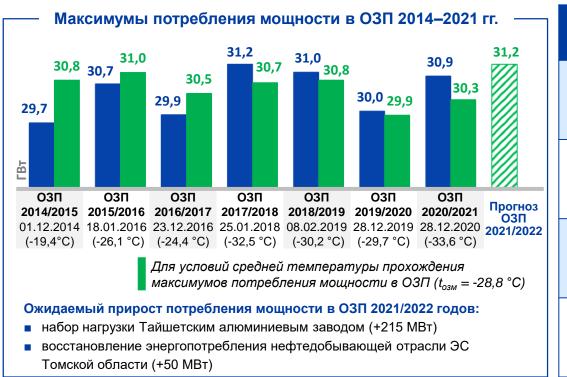
О подготовке энергосистем Сибирского федерального округа к прохождению отопительного сезона 2021/2022 года

Опадчий Федор Юрьевич Председатель Правления АО «СО ЕЭС»




Динамика потребления электроэнергии ОЭС Сибири в 2020–2022 гг., %

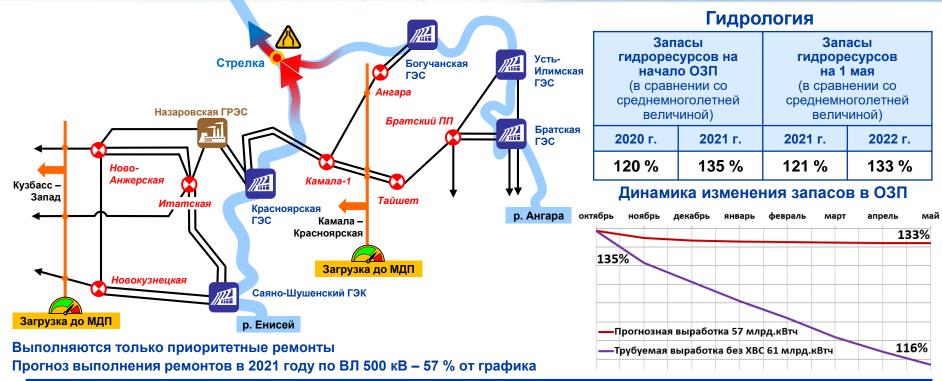
Динамика потребления электроэнергии ОЭС Сибири



Максимум потребления мощности ОЭС Сибири

31,8 ГВТ

исторический максимум потребления ОЭС Сибири (18.12.2012)



В 2021 году достигнуты исторические максимумы потребления в ПЭВТ

Наименование ЭС	Предыдущий max, МВт	Новый max, МВт	∆, МВ т	Кол- во
ОЭС Сибири	22 421 (19,9 °C)	23 181 (23,7 °C)	760	2
ЭС Республики Алтай и Алтайского края	1 294 (23,5 °C)	1 354 (24,5 °C)	60	4
ЭС Новосибирской области	1 818 (23,8 °C)	1 882 (27,2 °C)	64	3
ЭС Омской области	1 240 (23,7 °C)	1 298 (25,9 °C)	58	5

Высокая водность на ГЭС Ангаро-Енисейского каскада

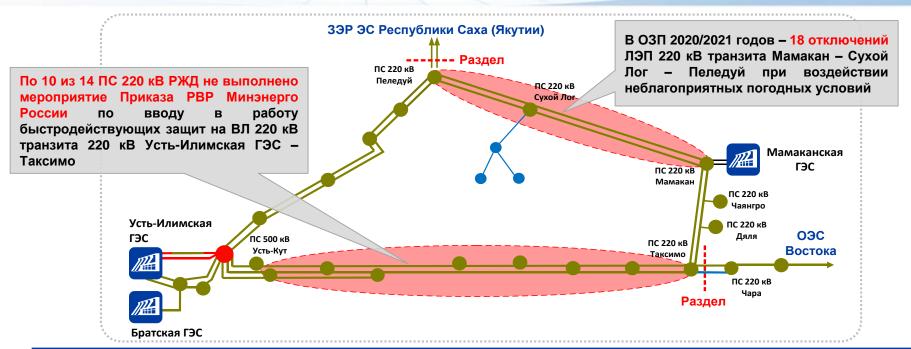
- ФСК ЕЭС и ИЭСК выполнить до начала ОЗП 2021/2022 годов приоритетные ремонты
- ГЭС АЕК обеспечить готовность несения максимальной нагрузки в ОЗП для уменьшения ХВС

Основные вводы оборудования в СФО в 2021 году

Фактические вводы электросетевого оборудования

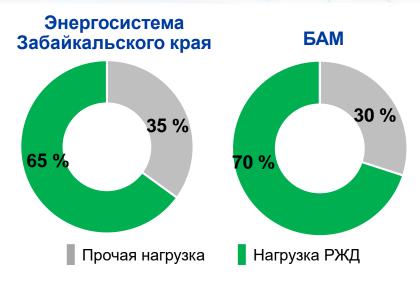
	Наименование объекта	Энергосистема	Эффект
4	IC 220 кВ Степная с одним трансформатором В МВА с ВЛ 220 кВ Означенное – Степная I, II цепь ВЛ 220 ВЛ Степная – Абаза	Республики Хакасия	ТП новых потребителей, в т.ч. РЖД
В	ВЛ 220 кВ Камала-1 – Саянская тяговая №2	Красноярского края	тп Ржд
Г	IC 220 кВ ТАЗ с ВЛ 220 кВ Озёрная – ТАЗ №1,2,3,4	Иркутской области	ТП Тайшетского алюминиевого завода
Г	IC 220 кВ Столбово с отпаечными ВЛ 220 кВ	Иркутской области	ТП новых потребителей

Планируемые вводы электросетевого оборудования


Наименование объекта	Энергосистема	Эффект
Вторая цепь транзита 220 кВ Минусинская опорная – Саянская тяговая	Красноярского края	
Вторая цепь транзита 220 кВ Междуреченская – Степная	Республики Хакасия, Кемеровской области	Обеспечение возможности
Окончание строительства ПС 220 кВ Степная с вводом второго трансформатора 40 МВА	Республики Хакасия	ТП новых нагрузок РЖД
Строительство ПС 220 кВ БАМ-1: ПС 220 кВ Чудничный и ПС 220 кВ Небель	Иркутской области	

Планируемые вводы генерирующего оборудования

Электростанция	Энергосистема	Генерирующее оборудование	Установленная мощность, МВт	Ввод в работу
Русско-Полянская СЭС	Омской области	Фотоэлектрические модули	30	4 квартал

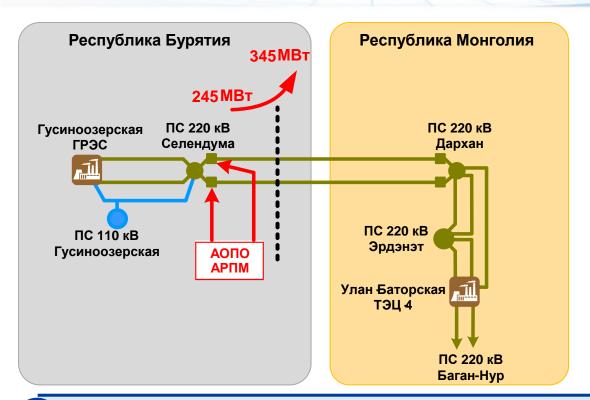

Надежность электроснабжения потребителей по электропередаче Усть-Кут – Таксимо – Пеледуй

- РЖД обеспечить в 2021 году выполнение мероприятия Приказа РВР Минэнерго России 2017 года по вводу в работу быстродействующих защит на ВЛ 220 кВ транзита 220 кВ Усть-Илимская ГЭС – Таксимо
- ФСК ЕЭС разработать проектные технические решения по повышению надежности работы ЛЭП 220 кВ транзита Мамакан Сухой Лог Пеледуй и обеспечить их реализацию

Включение электротяговой нагрузки РЖД в ГВО

- В связи с существенной долей нагрузки РЖД на транзитах формирование ГВО без включения тяговой нагрузки невозможно
- На совместном совещании Минэнерго России и РЖД 28.01.2021 подтверждена необходимость использования тяговой нагрузки в ГВО
- Отказ подразделений РЖД от выполнения команд на отключение тяговой нагрузки при вводе ГВО
- РЖД обеспечить реализацию команд на ввод ГВО в энергосистемах Сибири в заданном объеме
- Россети, ИЭСК совместно с СО ЕЭС определить перечень центров питания, отключение которых необходимо для ликвидации аварийных режимов при невыполнении подразделениями РЖД команд на ввод ГВО
- Штабам по обеспечению безопасности электроснабжения разработать комплекс мероприятий, обеспечивающих отключение нагрузки с центров питания для ликвидации аварийных режимов

Аварийный ремонт АТ ПС 220 кВ Отрадная



С 05.04.2021 в длительном аварийном ремонте находится 2AT-63 на ПС 220 кВ Отрадная:

- Риск недопустимой перегрузки оставшегося в работе 1AT-63 в условиях ремонта ВЛ С-7 (С-8) и отключения выключателя ВЛ С-8 (С-7) на Новосибирской ТЭЦ-4
- Отсутствие возможности проведения ремонтов оборудования в прилегающей сети
- Перегрузка 1AT-63 ликвидируется вводом ГВО на величину **до 41,3 МВт**
- ФГУП «ФТ-Центр» принять меры по восстановлению АТ до ОЗП 2021/2022 годов
- ФГУП «ФТ-Центр» обеспечить эксплуатацию оборудования ПС 220 кВ Отрадная в соответствии с установленными требованиями

Увеличение перетока активной мощности в Республику Монголия

2014 год
Министерством энергетики
Монголии инициирован вопрос об увеличении перетока по

выполнением ТЭО

сечению Селендума – Дархан с

■ Июнь 2021 года
Министерством энергетики
России поставлена задача по реализации в 2021 году
мероприятий по увеличению значения максимально-допустимого перетока в Монголию в сечении
Селендума – Дархан

ФСК ЕЭС обеспечить реализацию в 2021 г. АОПО и АРПМ на ПС 220 кВ Селендума

Использование цифровых технологий при управлении электроэнергетическим режимом

Система мониторинга запаса устойчивости (СМЗУ) система, предназначенная для определения допустимых перетоков (ДП) активной мощности в контролируемых сечениях (КС) в режиме реального времени

Реализовано

B 38 KC:

■ KC 500 kB – **23**

■ КС 110, 220 кВ – **15**

Реализация ■ KC 500 кB – **6**

в 2022 году ■ KC 110, 220 кB – **70**

Эффект:

- Увеличение ДП в КС:
 - 500 кВ в среднем на 400 МВт
 - 110, 220 кВ в среднем на 90 МВт
- Учет СМЗУ технологии при планировании электроэнергетического режима использование наиболее эффективных источников генерации

Централизованная противоаварийной система (ЦСПА) **03C** Сибири автоматики система. предназначенная для выбора объемов противоаварийного управления в режиме реального времени

В составе ЦСПА ОЭС Сибири

6 АДВ

Включение в состав ЦСПА ОЭС Сибири

3 АДВ:

■ **2021 г.** – АДВ ПС 1150 кВ Экибастузская (AO «KEGOC»), АДВ ПС 500 кВ Озерная

■ **2022 г.** – АДВ ПС 500 кВ Иркутская

Эффект:

Снижение объёма нагрузки потребителей и генерации, отключаемой действием противоаварийной автоматики, на величину до 1000 МВт

ИЭСК обеспечить включение в состав ЦСПА ОЭС Сибири АДВ ПС 500 кВ Озерная в 2021 году и АДВ ПС 500 кВ Иркутская в 2022 году

Готовность диспетчерских центров АО «СО ЕЭС» в ОЭС Сибири к работе в отопительный сезон 2021/2022 года 12

Оценка готовности диспетчерских центров проводилась в соответствии с Методикой проведения оценки готовности субъектов электроэнергетики к работе в отопительный сезон, утвержденной приказом Минэнерго России от 27.12.2017 № 1233.

Показатели готовности, определенные Методикой для Системного оператора, выполняются:

- Системная надежность (формы 1–7):
 - ТО оборудования СДТУ 354 единицы (84 %)
 - TO независимых каналов связи с узлами доступа операторов связи **72** канала (82 %)
 - выполнение мероприятий по результатам расследования причин аварий 42 мероприятия (90 %)
- Готовность персонала (формы 8–13):
 - дополнительное профессиональное образование **279** работников (89 %)
 - проверка знаний норм и правил 465 работников (86 %)
 - противоаварийные тренировки персонала 710 тренировок (80 %)
- Готовность к аварийно-восстановительной деятельности (формы 14–19):
 - аварийный запас сформирован в полном объеме в соответствии с утвержденными перечнями 438 единиц (100 %)
 - ТО резервных источников электроснабжения ДЦ **12** шт. (83 %)
 - ТОиР оборудования инженерных систем ДЦ **1310** единиц (83 %)
- Соблюдение требований к осуществлению оперативно-диспетчерского управления (формы 20–22):
 - коэффициент готовности ОИК во всех ДЦ − 100 %
 - выполнено **686** расчетов (84 %) параметров настройки устройств P3A, по результатам которых выдано **391** задание субъектам электроэнергетики на изменение параметров настройки устройств P3A

Рисков невыполнения показателей готовности нет.

Предложения в протокол

- 1. ПАО «ФСК ЕЭС» и ОАО «ИЭСК» выполнить до начала ОЗП 2021/2022 годов приоритетные ремонты
- 2. ПАО «ФСК ЕЭС» обеспечить реализацию в 2021 году АОПО и АРПМ на ПС 220 кВ Селендума для увеличения экспортных поставок в Монголию
- 3. ОАО «РЖД» обеспечить в 2021 году выполнение мероприятия, определенного Приказом Минэнерго России от 28.11.2017 № 1125, в части ввода в работу быстродействующих защит на ВЛ 220 кВ транзита 220 кВ Усть-Илимская ГЭС Таксимо
- 4. ПАО «ФСК ЕЭС» разработать проектные технические решения по повышению надежности работы ЛЭП 220 кВ транзита Мамакан Сухой Лог Пеледуй и обеспечить их реализацию
- 5. ОАО «РЖД» обеспечить реализацию команд на ввод ГВО в энергосистемах Сибири в заданном объеме
- 6. ПАО «Россети», АО «ИЭСК» совместно с АО «СО ЕЭС» определить перечень центров питания, отключение которых необходимо для ликвидации аварийных режимов при невыполнении ОАО «РЖД» команд на ввод ГВО
- 7. Штабам по обеспечению безопасности электроснабжения разработать комплекс мероприятий обеспечивающих отключение нагрузки от центров питания для ликвидации аварийных режимов
- 8. ФГУП «ФТ-Центр» обеспечить эксплуатацию оборудования ПС 220 кВ Отрадная в соответствии с установленными требованиями и принять меры по восстановлению АТ до ОЗП 2021/2022 годов
- 9. ОАО «ИЭСК» обеспечить включение в состав ЦСПА ОЭС Сибири АДВ ПС 500 кВ Озерная в 2021 году и АДВ ПС 500 кВ Иркутская в 2022 году

Частота в ЕЭС, Ги 50,000

Контакты и реквизиты

ЕЭС России

www.so-ups.ru

Оперативная информация о работе ЕЭС России

Индикаторы ЕЭС

Частота в ЕЭС России Гu 50.04 50:02

Новости Системного оператора

Спасибо за внимание

системы стандартизации в отрасли

Гемпература в ЕЭС Росски

Опадчий Федор Юрьевич

Председатель Правления АО «СО ЕЭС»

Аварийность по СФО за 7 месяцев 2021 года

Аварийность на объектах электросетевого хозяйства 110 кВ и выше	7 мес. 2020	7 мес. 2021
Россети, в т.ч.:	657	669
МЭС Сибири	73	75
Россети Сибирь	551	560
ТРК	33	34
иэск	145	153
PЭC	137	94
Электромагистраль	32	40
РЖД	79	66
Иные собственники СК	165	165
ОТОТИ	1215	1187

Аварийность на электростанциях 25 МВт и более	7 мес. 2020	7 мес. 2021
РусГидро	4	7
Берёзовская ГРЭС (Юнипро)	4	7
СГК	86	104
Томская генерация	7	3
ТГК-11	25	20
Байкальская ЭК	34	35
ЕвроСибЭнерго-Гидрогенерация	7	3
Иные собственники ГК	63	58
ИТОГО	230	237

Основная причина аварийности:

■ Низкая грозоупорность ЛЭП – 23 %

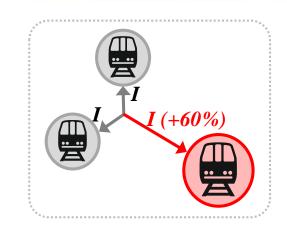
Основная причина аварийности:

■ Недостатки эксплуатации – 43 %

Доля аварий с неправильными действиями РЗА в общей аварийности		
Электрические сети – 9 %	Электростанции – 9 %	
Основные причины: Недостатки эксплуатации – 33 % и ошибочные действия персонала – 19 %		

Общее количество аварий в РЖД за 2016-2020 годы увеличилось с 65 до 131 аварии.

Аварий с неправильными действиями РЗА за 7 месяцев 2021 года – 41 % (с 2016 года – увеличение с 19 % до 41 %)


Основная причина: ошибочные действия персонала – 37 %

Несимметрия тока и напряжения в сети 110 – 220 кВ

Последствия искажающего влияния тяговой нагрузки:

- **Ограничение потребителей** для устранения несимметричных токовых перегрузок
- Нарушение в работе электроустановок потребителей
- Недоиспользование пропускной способности сети 110 кВ изза несимметричной токовой нагрузки (несимметрия токов достигает 60%)
- Неправильное излишнее срабатывание устройств РЗА

Мероприятие, применяемое при управлении электроэнергетическим режимом

Деление транзитов 110 кВ и 220 кВ

Статистика для транзита 110 кВ Левобережная – Ачинск

23 случая деления за 2021 г.

Реализацию мероприятий по снижению несимметрии учитывать при проектировании новых и реконструируемых подстанций РЖД